2.1
Metode Simpleks
Sebagian besar persoalan yang sering terjadi pada
setiap perusahaan berkenaan dengan penggunaan sumber secara efisien atau
alokasi sumber-sumber yang terbatas (tenaga kerja terampil, bahan mentah, lahan
subur, modal) untuk mencapai tujuan yang diinginkan seperti penerimaan hasil
penjualan yang diharuskan maksimum, jumlah biaya yang minimum. Dalam keadaan
sumber yang terbatas harus dicapai suatu hasil yang optimal dengan perkataan
lain bagaimana caranya agar dengan masukan (input) yang serba terbatas dapat
dicapai hasil kerja yaitu keluaran (output) berupa produksi barang atau jasa
yang optimal.
Sumber daya yang dimiliki suatu perusahaan sangat
kompleks dan terbatas. Artinya bila suatu perusahaan harus memecahkan masalah
tentang sumber daya yang terbatas dengan tujuan mencari keuntungan yang
optimal. Dalam manajemen produksi, permasalahan yang kompleks tersebut tidak
dapat diselesaikan dengan memakai cara grafik atau matematika. Oleh karena itu
untuk menganalisis masalah tersebut dilakukan dengan menggunakan metode simpleks
untuk berbagai masalah alokasi sumber daya yang terbatas untuk mencapai tujuan
yang optimal.
Pengertian Metode Simpleks
Menurut
Supranto, (1998:73) bahwa :
"Metode Simpleks ia!ah suatu metode
yang secara sistematis dimulai dari suatu pemecahan dasar yang fisibel ke
pemecahan dasar yang
fisibel (feasible) lainya dari ini dilakukan berulangulang (dengan jumlah
ulangan yang terbatas) sehingga akhirnya tercapai suatu pemecahan dasar yang
optimal dan pada setiap step menghasilkan suatu nilai dan fungsi tujuan yang
selalu lebih besar (lebih kecil) atau sama dari step-step sebelumnya".
Selain itu menurut Herjanto
(1999:191) mengemukakan bahwa:
"Metode Simpleks merupakan suatu
cara yang lazim dipakai untuk menentukan kombinasi optimal dari tiga variabel atau
lebih".
Menurut Handoko (2000:385)
mengemukakan bahwa:
"Metode simplek adalah suatu
prosedur aljabar, yang melalui serangkaian operasi - operasi berulang, dapat
memecahkan suatu masalah yang terdiri tiga variabel atau lebih."
Dari tiga
pendapat tersebut, dapat disimpulkan bahwa untuk menyelesaikan persoalan Linear
Programming dengan jumlah variabel dua atau lebih, agar mencapai suatu
pemecahan yang optimal, dalam hal ini untuk memaksimalkan laba dan meminimalkan
biaya, maka yang digunakan adalah metode simpleks.
Metode
Simpleks lebih efisien serta dilengkapi suatu test ktiteria yang bisa
memberitahukan kapan hitungan harus dihentikan dan kapan harus dilanjutkan
sampai memperoleh suatu optimal solution (maksimum profit, minimum cost),
permulaan yang fisibel sampai pada pemecahan terakhir yang memberikan optimal
solution. Yang lebih menarik ialah, bahwa semua informasi yang kita perlukan
(test criteria, nilai variable-variabel, nilai fungsi tujuan) akan terdapat
pada setiap table, selain itu fungsi dari tujuan dari suatu table akan
besar/kecil atau sama dengan table sebelumnya.
Langkah-langkah Penyelesaian Dengan Metode Simplek
Metode analisis yang digunakan adalah
pengambilan keputusan dengan Metode Simplek. Menurut Sudibjo dkk. (1996 : 34)
bahwa langkah-langkah metode simplek adalah sebagai berikut :
1.
Menentukan fungsi tujuan yang akan
dicapai.
2.
Mengidentifikasi
batasan/kendala/constrain dalam bentuk ketidaksamaan.
3.
Mengubah fungsi tujuan dan
batasan-batasan.
-
Fungsi tujuan diubah menjadi fungsi
implisit, artinya semua CjXij kita geser ke kiri
-
Fungsi pembatas diubah menjadi persaman
dengan cara menambah slack variabel. Banyaknya slack tergantung dari banyaknya
pembatas.
4.
Menyusun persamaan-persamaan di dalam
tabel simplek pertama/awal (fungsi tujuan dan batasan-batasan)
-
Memiliki kolom kunci dengan cara memilih
nilai pada baris fungsi tujuan yang bernilai negatif dengan angka terbesar.
Tandailah kolom tersebut sebagai kolom
kunci.
-
Memilih baris kunci dengan cara mencari
ideks, yaitu dengan rumus :
|
Nilai Kolom Kunci (NKK)
Pilih nilai hasil yang
mempunyai positif dengan angka terkecil dan tandailah angka tersebut dengan
baris kunci.
- Merubah nilai-nilai baris kunci dengan cara membagi seluruh nilai baris kunci dengan angka kunci. Sebagai hasilnya dihasilkan nilai baru baris kunci. Kemudian gantilah variable baris kunci dengan variabel dasar tersebut di atas kolom kunci.
- Merubah nilai-nilai selain baris kunci, dengan rumus :
Baris
baru = baris lama - (koefisien pada
kolom kunci x nilai baru baris
kunci)
- Melanjutkan perbaikan-perbaikan / perubahan-perubahan.
Bila
masih terdapat nilai negatif pada baris fungsi dalam baris Z maka belum optimal sehingga ulangi dari
langkah ke 3 sampai langkah ke 6 agar semua baris Z bernilai positif.
Tag :
LAPORAN OBSERVASI
0 Komentar untuk " CONTOH PENELITIAN "PERANAN METODE SIMLEK UNTUK PERENCANAAN PRODUKSI LIMA JENI5 KOMODITI PADA UNIT USAHA MEUBEUL KOPERASI SERBA USAHA TRIO FAMILY CIDOLOG CIAMIS". BAB II Metode Simpleks "